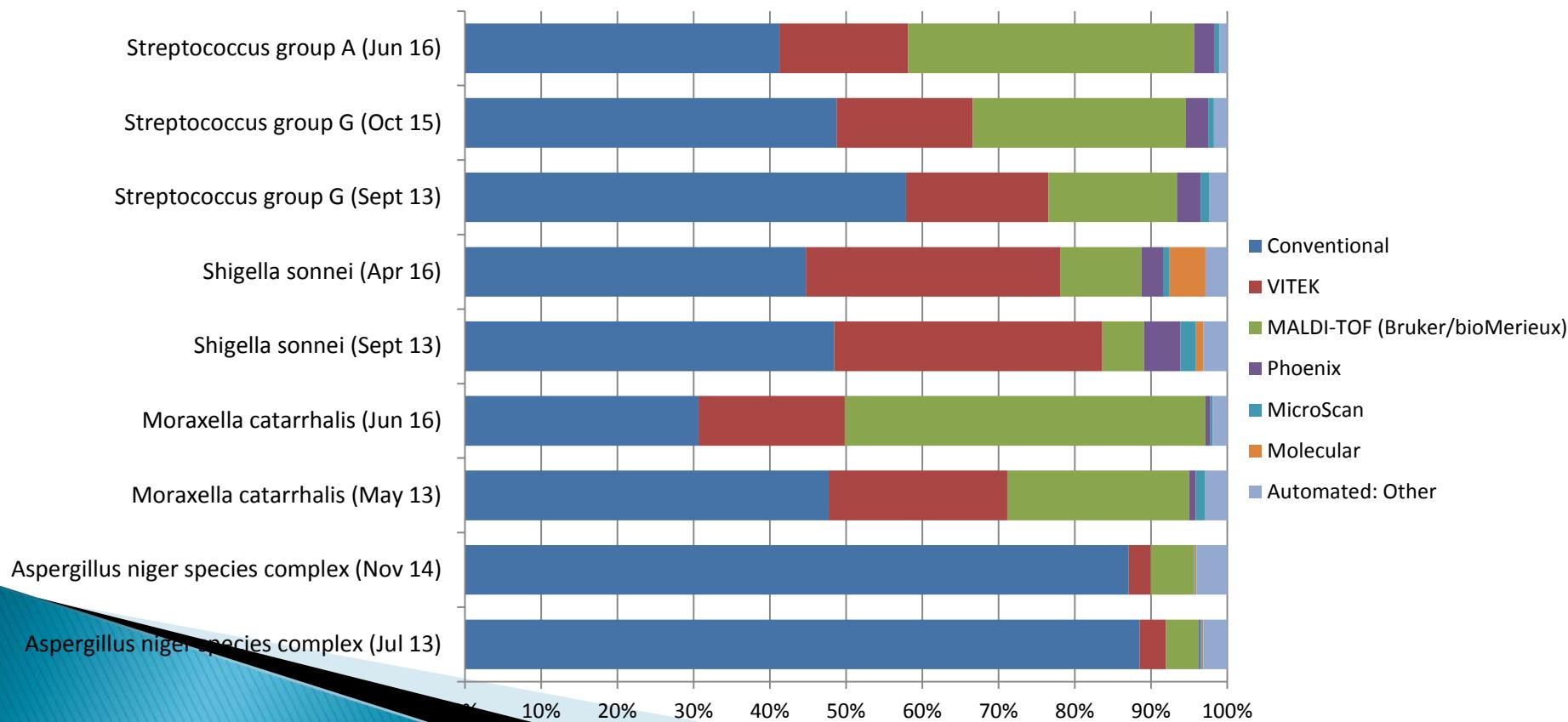


Rapid Diagnostics: Bacteriology & Mycology


Liz Fagan & Shila Seaton

General Bacteriology

► Trends in methodology

- Gradual move from conventional methods to MALDI-ToF

Methods used by participants to identify pathogens sent out in UK NEQAS General bacteriology scheme

Proteomics

Advantages

- ▶ Power to identify the increasing numbers of micro-organisms
- ▶ Speed (~ 5mins)
- ▶ No downstream manipulation
- ▶ Minimal training
- ▶ ID good as the database

Limitations

- ▶ Need an existing database
- ▶ Initial outlay
- ▶ Immobile
- ▶ Skill required to analyse spectra

Non culture

- ▶ EntericBio RT PCR

- TAT 3 hours
- Easy to use – no previous molecular experience required
- Negative screening reduces culturing 90–95%
- Positive PCR results allow lab to perform targeted culturing specific to pathogen detected
- Throughput of 48 samples per run
- Test panels all use same setup procedure on a single platform

Urinary antigens

▶ Legionella:

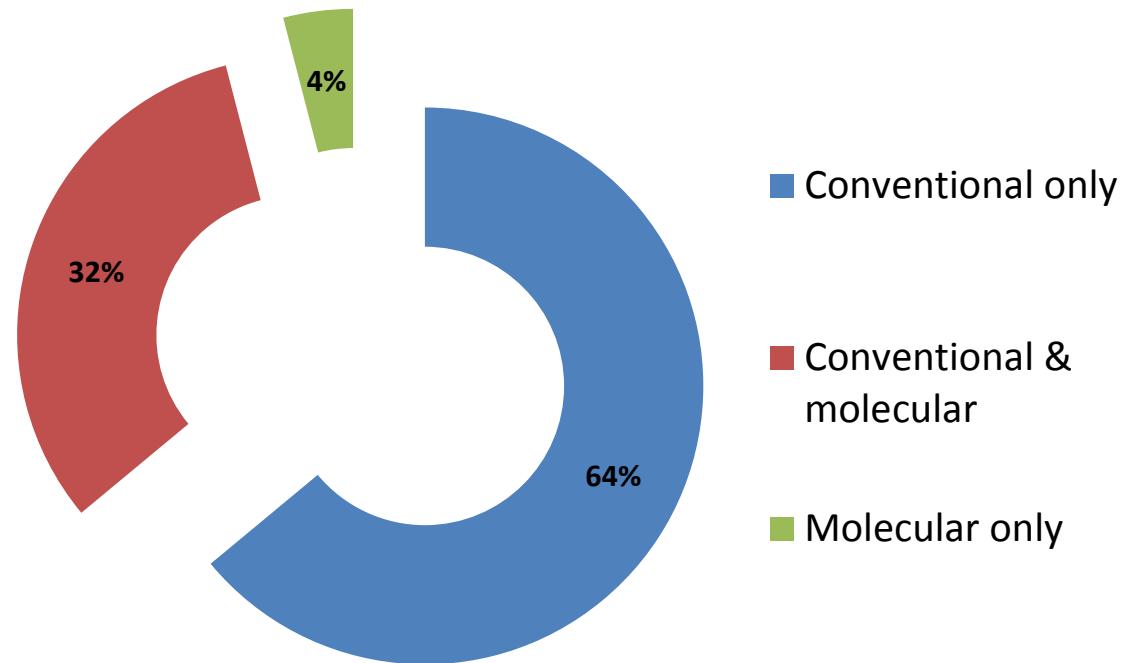
- Introduced in 2011
 - 5 EIA assays (including 1 in-house)
 - 5 rapid assays
- 5 years later
 - 4 EIA assays
 - 11 rapid assays

Legionella Assay	Distribution (Year)	
	2854 (Jun 2011)	3977 (Sept 2016)
Bartels LUA EIA	6	11
Binax LUA EIA	5	18
BioRad Legionella EIA	3	2
Biotest LUA EIA	4	3
In house EIA	1	-
ACCUSAY Legionella	3	-
BinaxNOW Legionella	182	244
bioMerieux: bioNexia	-	1
Legionella Monlab Test	-	1
Legionella K-SeT	-	4
Legionella V-Test	1	6
Meridian: TRU	-	14
Pro-Lab: Proflow	-	4
Quidel: Sofia Legionella FIA	-	17
Remel: Xpect	10	-
SAS Legionella	1	-
Servibio: UriSign	-	1
SSI Diag: ImmuView	-	9
Trinity: Uni-Gold	-	3
EIA total	19 (8.8%)	34 (10.1%)
Rapid total	197 (91.2%)	304 (89.9%)

Urinary antigens

► Pneumococcal

- Piloted in 2013
- Introduced in 2014
 - 2 rapid assays
- 2 years later
 - 6 rapid assays



	Distribution (Year)	
Pneumococcal assay	3474 (May 2014)	3977 (Sept 2016)
BinaxNOW S. pneumoniae	197	232
Meridian: TRU	–	5
Quidel: Sofia	–	11
Servibio: UriSign	–	1
SSI Diag: ImmuView	–	9
Trinity: Uni-Gold	3	6

MRSA screening

- ▶ Majority use conventional methods (309/322)
 - Chromogenic agar
- ▶ One third use molecular methods (116/322)
 - Cepheid Xpert

Which is the most useful diagnostic test for fungal diagnosis?

- ▶ Direct microscopy (Gram, calcoflour, lactophenol)
- ▶ Culture (macro/microscopic)
- ▶ Histopathology (staining, immunofluorescence)
- ▶ Antibody detection (CFT, ID)
- ▶ Antigen detection (1–3 beta D glucan, galactomannan, mannan, histoplasma GM)
- ▶ Molecular techniques (18S, ITS 28S)
- ▶ Proteomics
- ▶ WGS/NGS

Conventional /Traditional

Advantages

- ▶ Microscopy -direct investigations
- ▶ Culture Gold standard—allows susceptibility testing
- ▶ Histopathology tissue biopsies

Limitations

- ▶ Loss of experienced mycologists
- ▶ Increase in the diversity of fungal pathogens
- ▶ Time consuming
- ▶ Biopsies invasive and may not contain fungal elements

Serology (Antibody)

Advantages

- ▶ Endemic mycoses
- ▶ Immunodiffusion (*Aspergillus/ Candida* precipitans)
- ▶ Complement fixation for *Histoplasma* antibodies M and H antigens in urine
- ▶ EIA for Coccidioidomycosis (patients unable to produce a sputum)

Limitations

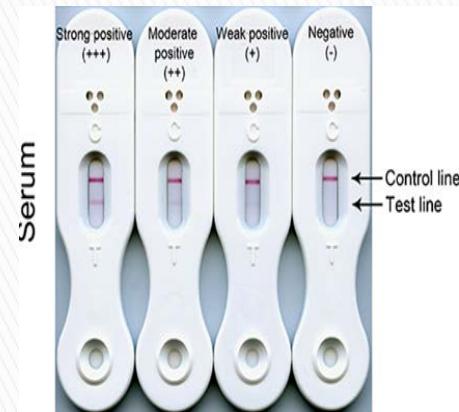
- ▶ Sensitivity dependant on type of disease
- ▶ Negative result ≠ no fungus
- ▶ Time consuming
- ▶ Experienced trained staff
- ▶ Patients have low immune response

Antigen detection Galactomannan

Advantages

- ▶ Sample readily available
- ▶ Positive result before culture
- ▶ Ability for screening and or diagnostic monitoring of IA
- ▶ Excellent NPV, good PPV

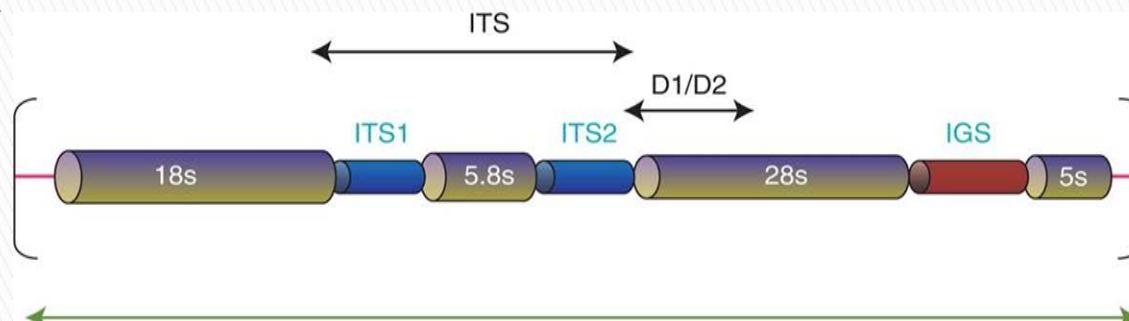
Limitations


- ▶ Variable positive index for ELISA
- ▶ Variable storage conditions
- ▶ Manual (automation)
- ▶ False positives
- ▶ GM transient
- ▶ EQA

Antigen detection- POCT

Cryptococcal/Aspergillus

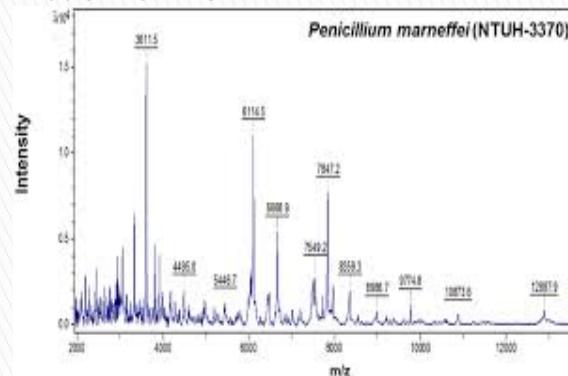
- ▶ Rapid
- ▶ Serum
- ▶ Qualitative and semi-quantitative detection of cryptococcal antigen.
- ▶ Quantitative for Aspergillus
- ▶ Bedside


Molecular diagnostics-culture/ non culture

Advantages

- ▶ Power to identify the increasing numbers of fungi
- ▶ Taxonomy and phylogeny
- ▶ Con/RT/qPCR
- ▶ No need for viable cells
- ▶ No need for culture
- ▶ High sensitivity & specificity

Limitations


- ▶ Great variability of PCR methods and confirmatory nature of the technology
- ▶ Variable in PPV NPV
- ▶ Skill mix required
- ▶ Costly
- ▶ Genebank

Proteomics

Advantages

- ▶ Power to identify the increasing numbers of fungi
- ▶ Speed (~ 5mins)
- ▶ No downstream manipulation
- ▶ Minimal training
- ▶ ID good as the database

Limitations

- ▶ Need an existing database
- ▶ Variability of spectra if tested at various growth conditions
- ▶ Initial outlay
- ▶ Immobile
- ▶ Skill required to analyse spectra

Fungal diagnostics -IA

Diagnostic tests

- ▶ Conventional: Culture

Microscopy

- ▶ 1-3BetaDGlcucan assay
- ▶ Galactomannan EIA
- ▶ Lateral flow device
- ▶ PCR
- ▶ Radiological findings
- ▶ Clinician assessment
- ▶ ?MALDI-ToF

Combination testing

- ▶ 78 BALS
- ▶ GM, beta-d-glucan, ALF, Conventional and PCR
- ▶ Sensitivity all 4 70-88%
- ▶ GM and ALF 94%
- ▶ GM and PCR 100% (spec for prob/prov 95-98%)

Hoeniq *et al* 2014 J. Clin Micro

Summary

- ▶ Results from our schemes show the trend towards the use of rapid diagnostic test to compliment or replace conventional methods
- ▶ All diagnostic tests have their advantages and limitations.
- ▶ There is no stand alone test to provide a definitive diagnosis for fungi